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Symmetries of the Euler compressible flow equations for general equation of

state

Zachary Boyd, Scott Ramsey, and Roy Baty

September 23, 2015

Abstract

The Euler compressible flow equations exhibit different Lie symmetries depending on the equation of state (EOS) of
the medium in which the flow occurs. This means that, in general, different types of similarity solution will be available
in different flow media. We present a comprehensive classification of all EOS’s to which the Euler equations apply, based
on the Lie symmetries admitted by the corresponding flow equations, restricting to the case of 1-D planar, cylindrical, or
spherical geometry. The results are conveniently summarized in tables. This analysis also clarifies past work by Axford
and Ovsiannikov on symmetry classification.

1 Introduction

The objective of this study is to express the symmetries of the 1-D Euler compressible flow equations, for any equation
of state to which the Euler compressible flow equations apply. The classification builds on a well-known analysis of the
Euler equations by Ovsiannikov. He classsified the symmetries relevant to a full 3-D geometry, and our goal is to adapt this
analysis to the case of 1-D planar, cylindrical, or spherical geometry, meaning that the flow velocity, density, and specific
energy should be a function of a single space coordinate and time. The end result of this analysis is Tables ??, ??, and ??,
which give the complete set of symmetries for various materials.

Axford did an analysis similar to this one as part of his work on the Noh problem. His focus was different from ours,
but his results overlap with and even appear to contradict ours. At the end of the paper, we present a detailed analysis of
Axford’s approach as it relates to our own, showing that the contradiction is only apparent.

2 Hydrodynamic equations in terms of the adiabatic bulk modulus

The governing equations for an invicid, non-conducting, compressible fluid in n spacial dimensions are given by the system
of PDE’s

ρ dtu+∇p = 0 (1)
dtρ+ div u = 0 (2)
dtS(p, ρ) = 0 (3)

where dt is the total derivative, and ρ, u, and p are the density, velocity, and pressure respectively. The function S is the
entropy, which we assume satisfies ∂pS|ρ 6= 0, in which case we define

A = −ρ∂ρS|p
∂pS|ρ

,

and rewrite the third equation as

dtp+A div u = 0.

We call A the adiabatic bulk modulus. Note that knowing the bulk modulus is almost equivalent to knowing the equation of
state. If we let ε be the specific internal energy, then the equation of state can be recovered from the bulk modulus via the
relation

A(p, ρ)
∂ε

∂p
+ ρ

∂ε

∂ρ
=
p

ρ

or alternatively one can recover p(ρ, ε) via
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A(p, ρ) = ρ
∂p

∂ρ
+
p

ρ

∂p

∂ε
,

although either of these approaches requires in general the introduction of an arbitrary function parameter to get the general
solution. This paper uses the bulk modulus rather than the EOS because the calculations are greatly simplified. While
some effort is made to translate the results into the language of EOS, this is sometimes impossible because solving the PDE
that relates the two may not have simple closed-form solution. Fortunately, if the reader wishes to apply these results to a
particular EOS, it is often a simple matter to plug the EOS into the conversion PDE, either numerically or symbolically, and
recover the corresponding bulk modulus.

We assume throughout that A 6= 0, except where specified. We also assume throughout that all functions encountered
are smooth.

Finally, converting equations ??-?? to 1-D planar, cylindrical, and spherical geometries yields

ρt + uρr + ρ

(
ur +

(n− 1)u
r

)
= 0 (4)

ρ (ut + uur) + pr = 0 (5)

pt + upr +A(p, ρ)
(
ur +

(n− 1)u
r

)
= 0, (6)

where n is set to 1 for planar, 2 for cylindrical, and 3 for spherical geometries, respectively.

3 The 3-D case

As stated above, we seek to determine, for any given A, what symmetries are possessed by the Euler equations. In the
fully 3-D case, this problem was first solved by Ovsiannikov, who used a Lie group method to produce the following list of
symmetries:

φ1 · ∂ = ∂t (7)
φ2 · ∂ = t∂t + xi∂xi

(8)

φi3 · ∂ = ∂xi (9)

φi4 · ∂ = t∂xi + ∂ui (10)

φik5 · ∂ = xk∂xi − xi∂xk
+ uk∂ui − ui∂uk (11)

φ6 · ∂ = t∂t − ui∂ui + 2ρ∂ρ (12)
φ7 · ∂ = p∂p + ρ∂ρ (13)
φ8 · ∂ = ∂p (14)

φp09 · ∂ = t2∂t + txi∂xi
+

(
xi − tui

)
∂ui − (n+ 2)t(p+ p0)∂p − ntρ∂ρ. (15)

where xi is the i-th spacial variable, and ui is the i-th component of the velocity. The summation convention on repeated
indices is observed.

Of these symmetries, the first five are valid regardless of the choice of A, and the remaining four may or may not be
present, depending on A. Exactly when each of the extra symmetry groups is manifested is summarized in Tables ?? and ??.

A r Operators
(p+ p0)f

(
(p+ p0)1+2mρ−1

)
1 mφ6 + φ7 + p0φ8

f
(
ρe−2ap

)
1 φ6 + 1

aφ8

f(ρ) 1 φ8

f(p) 1 φ6

A0ρ
m 2 φ8, (m− 1)φ6 − 2mφ7

γ(p+ p0) 2 φ6, φ7 + p0φ8
n+2
n (p+ p0) 3 φ6, φ7 + p0φ8, φ

p0
9

Table 1: Symmetry classification of bulk moduli (3-D, compact). Each class of bulk moduli on the left possesses the symmetry
operators given on the right, in addition to φ1-φ5, which are admitted by all bulk moduli. Here, r is the number of extra
symmetry generators, f is an arbitrary function, and m, p0, and a are arbitrary constants, a 6= 0.
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A q Operators
(p+ p0)f

(
(p+ p0)1+2mρ−1

)
1 mζ5 + ζ6 + p0ζ7

f
(
ρe−2ap

)
1 ζ5 + 1

aζ7
f(ρ) 1 ζ7
f(p) 1 ζ5
A0ρ

m 2 ζ7, (m− 1)ζ5 − 2mζ6
γ(p+ p0) 2 ζ5, ζ6 + p0ζ7

0 2 ζ5, ζ9
n+2
n (p+ p0) 3 ζ5, ζ6 + p0ζ7, ζ

p0
8

Table 3: Symmetry classification of bulk moduli (compact form). Each class of bulk moduli on the left is generated by the
symmetry operators given on the right, in addition to the symmetries possessed by all bulk moduli. Here, q is the number of
extra symmetry generators, n is 1,2, or 3 for planar, cylindrical, or spherical symmetry, respecively, f is an arbitrary nonzero
function, a is a nonzero constant, p0 is an arbitrary constant, and m is a constant which must be nonzero in the case A = A0ρ

m.
The definition of the ζi is given in equations ??-??.

The physical meaning of these symmetries is worth noting. φ1, φ
i
3, φ

i
4, and φik5 are standard coordinate shifts. It is

tempting to say that φ2, φ6, and φ7 are just scaling spacetime, time, and mass, respectively, but this is not true. φ2 fails to
scale pressure as expected, and the correct space, time, and mass scalings are φ2 − φ6 − φ7, φ6 − 2φ7, and φ7, respectively.
Since φ6 and φ7 do not apply in the case of general EOS, we see that the interpretation of these generators as unit scalings is
not in general valid and that this fact arises from the arbitrary nature of the bulk modulus, which may, for instance, contain
dimensional constants that would have to be adjusted by the same scaling as the variables. Finally, φ8 reflects independence
of the speed of sound from pressure. φ9 has no obvious physical meaning, but related symmetries appear in other hyperbolic
equations and sometimes have a clearer meaning in terms of in the Lorenz metric. We refer the reader to a treatment of a
related symmetry in Olver, page 125.

4 Collapse to 1-D symmetry

The symmetries in the previous section apply to full 3-D geometry. When we wish to work in 1-D geometry, not all of these
symmetries will apply, since applying some symmetry operators tends to bread the 1-D symmetry, especially in the cylindrical
and spherical cases, as we shall see. Conversely, some symmetries, such as rotation in spherical symmetry, have no effect at
all. The symmetries which will have useful, nontrivial effects in 1-D geometries are

ζ1 · ∂ = ∂t (16)
ζ2 · ∂ = t∂t + r∂r (17)
ζ3 · ∂ = ∂r (18)
ζ4 · ∂ = t∂r + ∂u (19)
ζ5 · ∂ = t∂t − u∂u + 2ρ∂ρ (20)
ζ6 · ∂ = p∂p + ρ∂ρ (21)
ζ7 · ∂ = ∂p (22)

ζp08 · ∂ = t2∂t + tr∂r + (r − tu) ∂u − (n+ 2)t(p+ p0)∂p − ntρ∂ρ (23)
ζ9 · ∂ = f(p)∂p + ρf ′(p)∂ρ. (24)

In analogy with the 3-D case, ζ1-ζ4 apply regardless of the choice of A, and the rest may arise or not, depending on the
choice of A. In addition, ζ3 and ζ4 are only valid in the case of planar symmetry. The exact situation in which each of zeta
5-9 apply is shown in Tables ?? and ??. Also, we have included Table ?? to help convert between EOS and A, although the
correspondence given is not complete since some of the cases proved too general to yield a closed-form solution to the PDE
relating EOS with A. Notice that it is permitted to add an arbitrary function of (generalized) entropy to the EOS. Observe
that ζ8 and ζ9 occur only in very special cases which may actually occur physically. For instance, the ideal gas gamma for
a noble gas at 20 degrees celsius approximately matches the EOS for ζ8 in the spherical case. Finally, we have included the
case where A = 0 in these tables for the sake of completeness (This is why ζ9 appears here but was not in the 3-D table).

There is one unusual symmetry that applies only in one ideal gas case, namely

ζ8 · ∂ = t2∂t + tr∂r + (r − tu) ∂u − (n+ 2)tp∂p − ntρ∂ρ,

where we have set p0 = 0. Integrating this gives the functions t, r, u, p, ρ, in terms of a parameter s. They are
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t(s) =
t0

1− st0
(25)

r(s) =
r0

1− st0
(26)

u(s) = u0 + s(r0 − t0u0) (27)

p(s) = p0(1− st0)n+2 (28)
ρ(s) = ρ0(1− st0)n. (29)

(30)

The physical meaning of this symmetry is not obvious. It should also be noted that the symmetry can only apply to situations
where time is bounded, since a singularity occurs when s = 1

t0
.

5 Applicability to various test problems

Symmetry analysis is useful for working out similarity solutions in analytic or reduced form, which can then be used as test
problems for hydrocodes. Each of the symmetries defined above may be useful in these endeavors, with the warning that some
of them may alter the initial/boundary conditions in unacceptable ways. For instance, any of the transformations that scales
density would be inappropriate for the Noh, Sedov, and Guderley problems, since the definitions of these problems requires a
constant, nonzero density to persist in regions ahead of the shocks. Sometimes this can be fixed by taking linear combinations
of the generators so that the density cancels (indeed, Axford uses this trick in his paper). Different test problems will yield
different applicable symmetries.

6 Comparison with Axford

Axford does an analysis similar to Ovsiannikov’s and the one in this paper, but focusing specifically on applications to the
Noh test problem. Since the Noh problem was already known to have a similarity solution when the material is an ideal
gas, Axford claims to find the set of all bulk moduli that admit the same symmetry generators as the ideal gas EOS and
then shows that any such bulk modulus admits a similarity solution of the Noh problem. But there is a minor error in
his explanation that makes it appear as though his analysis contradicts this one. The ideal gas bulk modulus admits the
following symmetry group.

ζ1 · ∂ = ∂t (31)
ζ2 · ∂ = t∂t + r∂r (32)
ζ3 · ∂ = ∂r (33)
ζ4 · ∂ = t∂r + ∂u (34)
ζ5 · ∂ = t∂t − u∂u + 2ρ∂ρ (35)
ζ6 · ∂ = p∂p + ρ∂ρ (36)

But, to preserve the boundary conditions of the Noh problem, it is necessary to consider only those symmetries for which
the coefficient of ζ5 is − 1

2 the coefficient of ζ6. He also tosses out symmetries involving ζ3 and ζ4 to ensure that symmetry
is preserved in the curvilinear case. Then he tosses out ζ1, leaving only the two symmetries ζ2 and ζ5 − 2ζ6 for use in
constructing a similarity solution. Finally, Axford focuses exclusively on the generator ζ2 for the rest of his solution. Thus, in
the end, Axford relies on only one symmetry to solve his problem. So Axford’s presentation of the classical ideal gas solution
involves multiple reductions to smaller and smaller groups.

Axford generalizes this procedure by finding all bulk moduli that admit the two-parameter group generated by ζ2 and
ζ5 − 2ζ6. These bulk moduli are of the form pf(ρ) or (p + p0)f(ρ), up to an equivalence transformation, and they include
the ideal gas, stiff gas, and certain Gruneisen EOSs. Our analysis agrees with this result, since this class of bulk moduli is
included in the first line of ?? and ??.

There is, however, an apparent contradiction, due in part to a minor mistake in the way Axford explains himself. While
he found the bulk moduli that admit ζ2 and ζ5−2ζ6, what he says is that he found the bulk moduli that admit the generators
??-??. While this mistake does not materially change his analysis, it does introduce an apparent contradiction, since it
appears that he claims that bulk moduli of the form pf(ρ) possess 4 symmetries (6 in the planar case), while in fact they
possess only 3 (5 in the planar case). Thus, Ovsiannikov’s, Axford’s, and this papers’ classification theorems do indeed agree.
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7 Number of symmetry generators

The fact that only one symmetry generator is needed to reduce to ODEs is sometimes not appreciated, partly because the
search for the correct generator often involves selecting carefully from a large group. Indeed, Axford’s approach was to only
work with materials that admitted all the symmetries of an ideal gas, which, as we have shown, possesses quite a lot of
symmetry compared to other materials. It is nevertheless true in principle that one symmetry generator can be enough to
reduce to ODEs, since we only want to reduce the number of variables by one. What is not so clear is how to choose the
symmety generator so that it yields good similarity variables for a given problem.

8 Conclusion

A complete classification of the different symmetry groups that the Euler equations may possess was given in the case of 1-D
planar, cylindrical, or spherical symmetry. Furthermore, we reconcile these results with those given by Axford.
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A ε Additional Term Comment

(p+ p0)f(ρ) (p+p0)g(ρ)
ρ2g′(ρ) − p0

(
1− 1

ρ

)
p+p0
ρ2g′(ρ)

f(ρ) (ρg(ρ))′ − p
ρ p− ρ2g′(ρ)

f(p) 1
ρ

(
g(p)
g′(p) − p

)
ρg′(p) g′′ 6= 0, f 6= 0

A0ρ
m A0

m−1ρ
m−1 − p

ρ
A0
m ρm − p m 6= 0, 1

A0ρ A0 − p
ρ +A0 log(A0ρ) A0ρ− p

A0 −A0+p
ρ ρA0e−p

γ(p+ p0) p+γp0
(γ−1)ρ (p+ p0)ρ−γ γ 6= 1 consant

p+ p0
p0+(p+p0) log(p+p0)

ρ
p+p0
ρ

n+2
n (p+ p0) np+(n+2)p0

2ρ (p+ p0)ρ−
n+2

n

Table 5: EOS corresponding to various bulk moduli (compact form). The bulk moduli on the left correspond to equations
of state where ε, the specific internal energy, is of the form given by column 2 plus an arbitrary function of the expression in
column 3. For instance, an equation of state corresponding to A = γp is of the form p

(γ−1)ρ
+ h

`
pρ−γ

´
, where h is an arbitrary

function. Throughout the table f , and g are arbitrary functions, and n is 1,2, or 3 for planar, cylindrical, or spherical symmetry,
respecively, and p0 and A0 are constants. The claim is not made that all ε corresponding to these A are included in this table,
but rather this constitutes an extensive family of examples. For complete information, it is always necessary to convert the
EOS into its corresponding bulk modulus on a case-by-case basis.
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